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Booming interests Widespread applications

Image Courtesy of De Volder Group at Cambridge

CNTs in Spotlight
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De Volder et al. Science, 2013



Topic: “carbon nanotube”
Topic: “carbon nanotube”

AND “environmental impact”

Delayed Environmental Investigation
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ISI Web of Science database

partial data for 2016

Shi et al. Green Chemistry, 2017



Tube furnaceHeterogeneous catalytic interface

Sustainable CNT Production Challenges:
Energy and Resources
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Chemical Process Operating system



Backward: 

• universal mechanistic insights 

might exist inside widespread 

recipe formulations

• inform green synthesis design

Forward: manufacturing innovations

• More efficient precursor

Alkynes growth

• More sustainable resources 

Gaseous product mixture from Fischer-

Tropsch synthesis

Upcycling waste plastics

Electrochemical conversion of CO2

• Reactor modifications

Continuous manufacturing

Gas flow direction control

Cold-walled reactor

Address Challenges: Looking Backward
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Chosen groups Collected parameters

Energy

• Temperature

Resource

• CxHy source

• CxHy flow rate

• H2 flow rate

• Carrier gas type

• Carrier gas flow rate

• Enhancer type

• Enhancer concentration

• Catalyst

Other

• Reactor type

• Reactor size

ISI Web of Science database

Topic: “carbon nanotube” AND “growth”

AND “chemical vapor deposition

Searched results: 2744

Data Extraction
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Ranked by record count



Pattern 1: 
Temperature Dependence 
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Shi et al. Green Chemistry, 2017



Clarify Potential Biases: Experiments
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Shi et al. Green Chemistry, 2017



Thermal Loss Model

Implication of Temperature Decrease
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Energy saving: 1.3*1011 J/kg CNTs Annual production: 2.2*106 kg/year

Shi et al. Green Chemistry, 2017

=2.9*1017 J/year ~ 7 million US household electricity consumption



Pattern 2: 
Material Demand: C and H loading
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CH4: high C loading C2H2: low C loading

Shi et al. Green Chemistry, 2017



Varied H2 dependence
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Shi et al. Green Chemistry, 2017
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Enhanced yield

Improved quality Diameter tuning

Shi et al. Green Chemistry, 2017



Atom Carbon Efficiency

Growth Condition Atomic Efficiency

Futaba et al. (Hata Group, 10% 

C2H4, 750 oC)

0.042%

Li et al. (Hart Group, 17% 

C2H4, 775 oC)

0.050%

Plata et al. (20% C2H4, 725 oC, 

cold-wall reactor)

0.002% 

Plata et al. (Alkyne-assisted

20% C2H4, 725 oC, cold-wall 

reactor)

0.026%

10% C2H4, 800 oC 0.038%

10% C2H4 + 10% H2, 800 oC 0.061%

1% C2H2, 800 oC 0.42%
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Atomic Efficiency =

C mass in CNT

C mass in input precursor

Shi et al. Green Chemistry, 2017



Mechanistic Insights 
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➢ Methodology transferable to green synthesis of other novel materials

Future Work
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➢ Should be automated for high-throughput screening 

➢ Link product application performance to synthetic methodologies 

Synthetic methodology Product application performance

Image courtesy of Kong group at MIT
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Temperature evolution
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