Mapping the carbon nanotube formation parameter space: Data mining and mechanistic understanding for efficient resource use

<u>Wenbo Shi</u>, Ke Xue, Eric R. Meshot, Desiree L. Plata Department of Chemical and Environmental Engineering Yale University 2017 SNO Conference

CNTs in Spotlight

Publications or patents [x1000/yr]

Booming interests

Widespread applications

De Volder et al. Science, 2013

Delayed Environmental Investigation

Sustainable CNT Production Challenges: Energy and Resources

Address Challenges: Looking Backward

Backward:

- universal mechanistic insights might exist inside widespread recipe formulations
- inform green synthesis design

Forward: manufacturing innovations

- More efficient precursor Alkynes growth
- More sustainable resources
 Gaseous product mixture from Fischer-Tropsch synthesis
 Upcycling waste plastics
 Electrochemical conversion of CO₂
- Reactor modifications Continuous manufacturing Gas flow direction control Cold-walled reactor

Data Extraction

Chosen groups

Topic: "carbon nanotube" AND "growth" AND "chemical vapor deposition Searched results: 2744

Ranked by record count

View Records	Field: Authors	Record Count	% of 2744	Bar Chart
× Exclude Records				
	ROBERTSON J	53	1.931 %	
	ZHANG Q	47	1.713 %	1
	WEI F	46	1.676 %	1
	HOFMANN S	36	1.312 %	1
	HOMMA Y	31	1.130 %	1
	HART AJ	30	1.093 %	1
	HATA K	29	1.057 %	1
	MILNE WI	29	1.057 %	1
	AJAYAN PM	28	1.020 %	1
	HUANG JQ	27	0.984 %	T
	LEE JH	23	0.838 %	T.

•

Pattern 1: Temperature Dependence

Shi et al. Green Chemistry, 2017

7

Clarify Potential Biases: Experiments

Implication of Temperature Decrease

Energy saving: $1.3*10^{11}$ J/kg CNTs \bigwedge Annual production: $2.2*10^{6}$ kg/year = $2.9*10^{17}$ J/year ~ 7 million US household electricity consumption

Pattern 2: Material Demand: C and H loading

CH₄: high C loading

C₂H₂: low C loading

Varied H₂ dependence

Shi et al. Green Chemistry, 2017¹¹

Role of H₂

Growth Temperature (°C)

Shi et al. Green Chemistry, 2017

Atom Carbon Efficiency

	Atomic Efficiency =
	C mass in CNT
С	mass in input precursor

Growth Condition	Atomic Efficiency
Futaba et al. (Hata Group, 10% C ₂ H ₄ , 750 °C)	0.042%
Li et al. (Hart Group, 17% C ₂ H ₄ , 775 °C)	0.050%
Plata et al. (20% C ₂ H ₄ , 725 °C, cold-wall reactor)	0.002%
Plata et al. (Alkyne-assisted 20% C_2H_4 , 725 °C, cold-wall reactor)	0.026%
10% C ₂ H ₄ , 800 °C	0.038%
10% $C_2H_4 + 10\% H_2$, 800 °C	0.061%
1% C ₂ H ₂ , 800 °C	0.42%

Mechanistic Insights

Future Work

Should be automated for high-throughput screening

> Methodology transferable to green synthesis of other novel materials

Image courtesy of Kong group at MIT

Link product application performance to synthetic methodologies

Synthetic methodology \longrightarrow Product application performance

Acknowledgements

Temperature evolution

